Search
Brand Names
Browse by Manufacturer
Browse Categories
Store Policies

L-Carnitine L-Tartrate Pure Powder 250 grams


ratingratingratingratingrating
ADP: $59.99
Price: $15.99
You Save: 73 %
In stock
Manufacturer: *Supplement Direct*
Manufacturer Part No: 7348903376
free shipping
  • Fitness Support
  • 100% Pure Powder
  • Purest Form, Clinically Tested
  • Transports Fatty Acids
  • Boosts Cellular Energy*
  • Vegetarian Product

L-Carnitine is a non-essential amino acid that helps to maintain overall good health by facilitating the transfer of fatty acid groups into the mitochondrial membrane for cellular energy production.*  It naturally occurs in red meat and other animal source foods, but we recommend supplementation to obtain optimal levels of this excellent amino acid.  NOW® L-Carnitine is the purest form, clinically tested, and vegetarian (non-animal sourced).

 
Serving Size: Two 1/4 Level Teaspoons (1.9 g)
Servings Per Container: 132


  Amount Per Serving % Daily Value
L-Carnitine (from L-Carnitine Tartrate)   1.27 g (1,270 mg)*    
 
 
Suggested Usage:  As a dietary supplement, take one or two 1/4 level teaspoons 1 to 2 times daily with or without meals.  Consider taking this product in combination with SD DAA.
 
Other Ingredients:  None.
 
Contains no:  sugar, salt, starch, yeast, wheat, gluten, corn, soy, milk, egg, shellfish or preservatives.  Vegetarian/Vegan Product.
 
Disclaimers:  *These statements have not been evaluated by the FDA.  This product is not intended to diagnose, treat, cure or prevent any disease.
 
 
Int J Sports Med. 1989 Jun;10(3):169-74.

Decrease in respiratory quotient during exercise following L-carnitine supplementation.

Source

Association Sport-Biologie, Lyone, France.

Abstract

This study was undertaken to determine the effects of L-carnitine addition to the diet during submaximal exercise in endurance-trained humans. Ten subjects (VO2max: 62 ml.kg-1.min-1) performed a control test (C) (45 min of cycling at 66% of VO2max) followed by 60 min of recovery in a sitting position. Each subject repeated this trial after 28 days of placebo (P) and L-carnitine (L-C) treatment (double-blinded cross-over design). The dose of each treatment was 2 g/day. There were no differences between the C and P tests. The respiratory quotient was lower (p less than 0.05) with treatment than with P or C during exercise. In addition, oxygen uptake, heart rate, blood glycerol, and resting plasma free fatty acid concentrations presented a nonsignificant trend toward higher values in L-C than in the C or P groups. These observations suggest an increased lipid utilization by muscle during exercise in the L-C-treated group. This effect has further possibilities for improving performance during submaximal exercise.
 
Int J Sports Med. 1990 Feb;11(1):1-14.

L-carnitine supplementation in humans. The effects on physical performance.

Source

Department of Physiology, School of Medicine, University of Geneva.

Abstract

The use of supplementary L-carnitine by athletes has become rather widespread over the recent years even in the absence of unequivocal results from human experimental studies that might support this practice. To justify the above procedure, the most commonly purported reasons are that L-carnitine administration could hypothetically: 1. increase lipid turnover in working muscles leading to glycogen saving and, as a consequence, allow longer performances for given heavy work loads; 2. contribute to the homeostasis of free and esterified L-carnitine in plasma and muscle, the allegation being that the levels of one or more of these compounds may decrease in the course of heavy repetitive exercise. A critical survey of the literature on carnitine metabolism in healthy humans at exercise does not appear to be available. The authors are of the opinion that this paper, besides shedding light into some relevant aspects of energy turnover in muscle, could also be of practical use not only for the physiologists but particularly for the Sport Medicine practitioners.
 
J Strength Cond Res. 2003 Aug;17(3):455-62.

The effects of L-carnitine L-tartrate supplementation on hormonal responses to resistance exercise and recovery.

Source

Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA. kraemer@uconnvm.uconn.edu

Abstract

The purpose of this investigation was to examine the influence of L-carnitine L-tartrate (LCLT) supplementation using a balanced, cross-over, placebo-controlled research design on the anabolic hormone response (i.e., testosterone [T], insulin-like growth factor-I, insulin-like growth factor-binding protein-3 [IGFBP-3], and immunofunctional and immunoreactive growth hormone [GHif and GHir]) to acute resistance exercise. Ten healthy, recreationally weight-trained men (mean +/- SD age 23.7 +/- 2.3 years, weight 78.7 +/- 8.5 kg, and height 179.2 +/- 4.6 cm) volunteered and were matched, and after 3 weeks of supplementation (2 g LCLT per day), fasting morning blood samples were obtained on six consecutive days (D1-D6). Subjects performed a squat protocol (5 sets of 15-20 repetitions) on D2. During the squat protocol, blood samples were obtained before exercise and 0, 15, 30, 120, and 180 minutes postexercise. After a 1-week washout period, subjects consumed the other supplement for a 3-week period, and the same experimental protocol was repeated using the exact same procedures. Expected exercise-induced increases in all of the hormones were observed for GHir, GHif, IGFBP-3, and T. Over the recovery period, LCLT reduced the amount of exercise-induced muscle tissue damage, which was assessed via magnetic resonance imaging scans of the thigh. LCLT supplementation significantly (p < 0.05) increased IGFBP-3 concentrations prior to and at 30, 120, and 180 minutes after acute exercise. No other direct effects of LCLT supplementation were observed on the absolute concentrations of the hormones examined, but with more undamaged tissue, a greater number of intact receptors would be available for hormonal interactions. These data support the use of LCLT as a recovery supplement for hypoxic exercise and lend further insights into the hormonal mechanisms that may help to mediate quicker recovery.
 
Am J Physiol Endocrinol Metab. 2002 Feb;282(2):E474-82.

L-Carnitine L-tartrate supplementation favorably affects markers of recovery from exercise stress.

Source

Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, Connecticut 06269, USA. jvolek@uconnvm.uconn.edu

Abstract

We examined the influence of L-carnitine L-tartrate (LCLT) on markers of purine catabolism, free radical formation, and muscle tissue disruption after squat exercise. With the use of a balanced, crossover design (1 wk washout), 10 resistance-trained men consumed a placebo or LCLT supplement (2 g L-carnitine/day) for 3 wk before obtaining blood samples on six consecutive days (D1 to D6). Blood was also sampled before and after a squat protocol (5 sets, 15-20 repetitions) on D2. Muscle tissue disruption at the midthigh was assessed using magnetic resonance imaging (MRI) before exercise and on D3 and D6. Exercise-induced increases in plasma markers of purine catabolism (hypoxanthine, xanthine oxidase, and serum uric acid) and circulating cytosolic proteins (myoglobin, fatty acid-binding protein, and creatine kinase) were significantly (P < or = 0.05) attenuated by LCLT. Exercise-induced increases in plasma malondialdehyde returned to resting values sooner during LCLT compared with placebo. The amount of muscle disruption from MRI scans during LCLT was 41-45% of the placebo area. These data indicate that LCLT supplementation is effective in assisting recovery from high-repetition squat exercise.
 
J Strength Cond Res. 2008 Jul;22(4):1130-5.

Effects of L-carnitine L-tartrate supplementation on muscle oxygenation responses to resistance exercise.

Source

Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, Connecticut, USA.

Abstract

Previous research has shown that L-carnitine L-tartrate (LCLT) supplementation beneficially affects markers of hypoxic stress following resistance exercise. However, the mechanism of this response is unclear. Therefore, the primary purpose of this study was to determine the effects of LCLT supplementation on muscle tissue oxygenation during and after multiple sets of squat exercise. Nine healthy, previously resistance-trained men (25.2 +/- 6.years, 91.2 +/- 10.2 kg, 180.2 +/- 6.3 cm) ingested 2 g.d of LCLT or an identical placebo for 23 days in a randomized, balanced, crossover, double-blind, placebo-controlled, repeated-measures study design. On day 21, forearm muscle oxygenation was measured during and after an upper arm occlusion protocol using near infrared spectroscopy (NIRS), which measures the balance of oxygen delivery in relation to oxygen consumption. On day 22, subjects performed 5 sets of 15 to 20 repetitions of squat exercise with corresponding measures of thigh muscle oxygenation, via NIRS, and serial blood draws. Compared to the placebo trial, muscle oxygenation was reduced in the LCLT trial during upper arm occlusion and following each set of resistance exercise. Despite reduced oxygenation, plasma malondealdehyde, a marker of membrane damage, was attenuated during the LCLT trial. There were no differences between trials in the vasoactive substance prostacyclin. In conclusion, because oxygen delivery was occluded during the forearm protocol, it is proposed that enhanced oxygen consumption mediated the reduced muscle oxygenation during the LCLT trial. Enhanced oxygen consumption would explain why hypoxic stress was attenuated with LCLT supplementation.
 
Med Sci Sports Exerc. 2006 Jul;38(7):1288-96.

Androgenic responses to resistance exercise: effects of feeding and L-carnitine.

Source

Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269-1110, USA. William.Kraemer@uconn.edu

Erratum in

  • Med Sci Sports Exerc. 2006 Oct;38(10):1861.

Abstract

PURPOSE:

The purpose of this investigation was to determine the effects of 3 wk of L-carnitine L-tartrate (LCLT) supplementation and post-resistance-exercise (RE) feeding on hormonal and androgen receptor (AR) responses.

METHODS:

Ten resistance-trained men (mean+/-SD: age, 22+/-1 yr; mass, 86.3+/-15.3 kg; height, 181+/-11 cm) supplemented with LCLT (equivalent to 2 g of L-carnitine per day) or placebo (PL) for 21 d, provided muscle biopsies for AR determinations, then performed two RE protocols: one followed by water intake, and one followed by feeding (8 kcal.kg body mass, consisting of 56% carbohydrate, 16% protein, and 28% fat). RE protocols were randomized and included serial blood draws and a 1-h post-RE biopsy. After a 7-d washout period, subjects crossed over, and all experimental procedures were repeated.

RESULTS:

LCLT supplementation upregulated (P<0.05) preexercise AR content compared with PL (12.9+/-5.9 vs 11.2+/-4.0 au, respectively). RE increased (P<0.05) AR content compared with pre-RE values in the PL trial only. Post-RE feeding significantly increased AR content compared with baseline and water trials for both LCLT and PL. Serum total testosterone concentrations were suppressed (P<0.05) during feeding trials with respect to corresponding water and pre-RE values. Luteinizing hormone demonstrated subtle, yet significant changes in response to feeding and LCLT.

CONCLUSION:

In summary, these data demonstrated that: 1) feeding after RE increased AR content, which may result in increased testosterone uptake, and thus enhanced luteinizing hormone secretion via feedback mechanisms; and 2) LCLT supplementation upregulated AR content, which may promote recovery from RE.
 
Metabolism. 2010 Aug;59(8):1190-9. Epub 2009 Dec 31.

l-Carnitine l-tartrate supplementation favorably affects biochemical markers of recovery from physical exertion in middle-aged men and women.

Source

Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269-1110, USA.

Abstract

The purpose of this study was to examine the effects of Carnipure tartrate (Lonza, Allendale, NJ) supplementation (total dose of 2 g/d of l-carnitine) on markers of performance and recovery from physical exertion in middle-aged men and women. Normally active and healthy men (n = 9, 45.4 +/- 5.3 years old) and women (n = 9, 51.9 +/- 5.0 years old) volunteered to participate in the investigation. Double-blind, placebo, balanced treatment presentation and crossover design were used with 3 weeks and 3 days of supplementation followed by a 1-week washout period before the other counterbalanced treatment was initiated. After 3 weeks of each supplementation protocol, each participant then performed an acute resistance exercise challenge of 4 sets of 15 repetitions of squat/leg press at 50% 1-repetition maximum and continued supplementation over the recovery period that was evaluated. Blood samples were obtained at preexercise and at 0, 15, 30, and 120 minutes postexercise during the acute resistance exercise challenge and during 4 recovery days as well. Two grams of l-carnitine supplementation had positive effects and significantly (P < or = .05) attenuated biochemical markers of purine metabolism (ie, hypoxanthine, xanthine oxidase), free radical formation (malondialdehyde), muscle tissue disruption (myoglobin, creatine kinase), and muscle soreness after physical exertion. However, markers of physical performance (ie, strength, power, get up and go) were not affected by supplementation. These findings support our previous findings of l-carnitine in younger people that such supplementation can reduce chemical damage to tissues after exercise and optimize the processes of muscle tissue repair and remodeling.
 
J Strength Cond Res. 2007 Feb;21(1):259-64.

Responses of criterion variables to different supplemental doses of L-carnitine L-tartrate.

Source

Department of Kinesiology, University of Connecticut, Storrs 06269, USA.

Abstract

L-carnitine L-tartrate (LCLT) supplementation beneficially affects markers of postexercise metabolic stress and muscle damage. However, to date, no study has determined the dose response of LCLT to elicit such responses. Therefore, the purpose of this study was to determine the effects of different doses of LCLT on criterion variables previously shown to be responsive to LCLT supplementation. Eight healthy men (22 +/- 3 y, 174 +/- 5 cm, 83.0 +/- 15.3 kg) were supplemented with 0 g, 1 g, and 2 g of LCLT for 3 weeks and then performed a bout of resistance exercise (5 sets of 15-20 repetition maximum with a 2-min rest between sets) with associated blood draws. This procedure was performed in a balanced, randomized, repeated measures design. Serum carnitine concentrations increased (p < or = 0.05) following the 1 g and 2 g doses, with the 2-g dose providing the highest carnitine concentrations. The 1- and 2-g doses reduced postexercise serum hypoxanthine, serum xanthine oxidase, serum myoglobin, and perceived muscle soreness. In conclusion, both the 1- and 2-g doses were effective in mediating various markers of metabolic stress and of muscle soreness. Use of LCLT appears to attenuate metabolic stress and the hypoxic chain of events leading to muscle damage after exercise.
 

Product Reviews

Rate This Product:
or Create a Review
(1 Rating, 0 Reviews) Average Rating:
ratingratingratingratingrating
Your cart is empty.
Customer Feedback Link To Us
Mailing Lists